MakeItFrom.com
Menu (ESC)

C10500 Copper vs. ACI-ASTM CN3M Steel

C10500 copper belongs to the copper alloys classification, while ACI-ASTM CN3M steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C10500 copper and the bottom bar is ACI-ASTM CN3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.8 to 51
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 220 to 400
500
Tensile Strength: Yield (Proof), MPa 75 to 400
190

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1080
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
31
Density, g/cm3 9.0
8.1
Embodied Carbon, kg CO2/kg material 2.6
5.9
Embodied Energy, MJ/kg 42
80
Embodied Water, L/kg 350
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
130
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
89
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 12
17
Strength to Weight: Bending, points 9.1 to 14
17
Thermal Diffusivity, mm2/s 110
3.4
Thermal Shock Resistance, points 7.8 to 14
11

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 99.89 to 99.966
0
Iron (Fe), % 0
42.4 to 52.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.5 to 5.5
Nickel (Ni), % 0
23 to 27
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.050
0