MakeItFrom.com
Menu (ESC)

C10500 Copper vs. AWS E90C-B3

C10500 copper belongs to the copper alloys classification, while AWS E90C-B3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C10500 copper and the bottom bar is AWS E90C-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.8 to 51
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 220 to 400
710
Tensile Strength: Yield (Proof), MPa 75 to 400
600

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 32
4.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
24
Embodied Water, L/kg 350
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
130
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
970
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 12
25
Strength to Weight: Bending, points 9.1 to 14
23
Thermal Diffusivity, mm2/s 110
11
Thermal Shock Resistance, points 7.8 to 14
21

Alloy Composition

Carbon (C), % 0
0.050 to 0.12
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 99.89 to 99.966
0 to 0.35
Iron (Fe), % 0
93.4 to 96.4
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.2
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 0.6
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5