MakeItFrom.com
Menu (ESC)

C10500 Copper vs. AWS ER100S-1

C10500 copper belongs to the copper alloys classification, while AWS ER100S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C10500 copper and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.8 to 51
18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 220 to 400
770
Tensile Strength: Yield (Proof), MPa 75 to 400
700

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1080
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
49
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
3.6
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
24
Embodied Water, L/kg 350
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
130
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
1290
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 12
27
Strength to Weight: Bending, points 9.1 to 14
24
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 7.8 to 14
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 99.89 to 99.966
0 to 0.25
Iron (Fe), % 0
93.5 to 96.9
Manganese (Mn), % 0
1.3 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.4 to 2.1
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.2 to 0.55
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5