MakeItFrom.com
Menu (ESC)

C10500 Copper vs. EN 1.4613 Stainless Steel

C10500 copper belongs to the copper alloys classification, while EN 1.4613 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C10500 copper and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.8 to 51
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
79
Shear Strength, MPa 150 to 210
330
Tensile Strength: Ultimate (UTS), MPa 220 to 400
530
Tensile Strength: Yield (Proof), MPa 75 to 400
280

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1050
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1080
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
19
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
12
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 42
38
Embodied Water, L/kg 350
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
91
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
190
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 12
19
Strength to Weight: Bending, points 9.1 to 14
19
Thermal Diffusivity, mm2/s 110
5.2
Thermal Shock Resistance, points 7.8 to 14
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 25
Copper (Cu), % 99.89 to 99.966
0 to 0.5
Iron (Fe), % 0
70.3 to 77.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0
0.2 to 1.0
Residuals, % 0 to 0.050
0