MakeItFrom.com
Menu (ESC)

C10500 Copper vs. EN 1.4652 Stainless Steel

C10500 copper belongs to the copper alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C10500 copper and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.8 to 51
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Shear Strength, MPa 150 to 210
610
Tensile Strength: Ultimate (UTS), MPa 220 to 400
880
Tensile Strength: Yield (Proof), MPa 75 to 400
490

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1080
1410
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 390
9.8
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
34
Density, g/cm3 9.0
8.0
Embodied Carbon, kg CO2/kg material 2.6
6.4
Embodied Energy, MJ/kg 42
87
Embodied Water, L/kg 350
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
340
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
570
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 12
30
Strength to Weight: Bending, points 9.1 to 14
25
Thermal Diffusivity, mm2/s 110
2.6
Thermal Shock Resistance, points 7.8 to 14
20

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 99.89 to 99.966
0.3 to 0.6
Iron (Fe), % 0
38.3 to 46.3
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.0050
Residuals, % 0 to 0.050
0