MakeItFrom.com
Menu (ESC)

C10500 Copper vs. SAE-AISI D3 Steel

C10500 copper belongs to the copper alloys classification, while SAE-AISI D3 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C10500 copper and the bottom bar is SAE-AISI D3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.8 to 51
9.8 to 15
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
74
Shear Strength, MPa 150 to 210
470 to 1220
Tensile Strength: Ultimate (UTS), MPa 220 to 400
770 to 2050
Tensile Strength: Yield (Proof), MPa 75 to 400
480 to 1550

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1080
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
31
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
8.0
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 42
48
Embodied Water, L/kg 350
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
97 to 180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 12
28 to 74
Strength to Weight: Bending, points 9.1 to 14
24 to 47
Thermal Diffusivity, mm2/s 110
8.3
Thermal Shock Resistance, points 7.8 to 14
23 to 63

Alloy Composition

Carbon (C), % 0
2.0 to 2.4
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 99.89 to 99.966
0 to 0.25
Iron (Fe), % 0
80.3 to 87
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
0 to 0.3
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 0
0 to 1.0
Residuals, % 0 to 0.050
0