MakeItFrom.com
Menu (ESC)

C10700 Copper vs. 5252 Aluminum

C10700 copper belongs to the copper alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C10700 copper and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 2.2 to 50
4.5 to 11
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
25
Shear Strength, MPa 160 to 240
140 to 160
Tensile Strength: Ultimate (UTS), MPa 230 to 410
230 to 290
Tensile Strength: Yield (Proof), MPa 77 to 410
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
650
Melting Onset (Solidus), °C 1080
610
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 390
140
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 35
9.5
Density, g/cm3 9.0
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.7
Embodied Energy, MJ/kg 42
160
Embodied Water, L/kg 390
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.9 to 91
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
210 to 430
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 7.2 to 13
23 to 30
Strength to Weight: Bending, points 9.4 to 14
31 to 36
Thermal Diffusivity, mm2/s 110
57
Thermal Shock Resistance, points 8.2 to 15
10 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 97.8
Copper (Cu), % 99.83 to 99.915
0 to 0.1
Iron (Fe), % 0
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0
0 to 0.1
Oxygen (O), % 0 to 0.0010
0
Silicon (Si), % 0
0 to 0.080
Silver (Ag), % 0.085 to 0.12
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1