MakeItFrom.com
Menu (ESC)

C10700 Copper vs. ASTM A369 Grade FP9

C10700 copper belongs to the copper alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C10700 copper and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.2 to 50
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Shear Strength, MPa 160 to 240
300
Tensile Strength: Ultimate (UTS), MPa 230 to 410
470
Tensile Strength: Yield (Proof), MPa 77 to 410
240

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
600
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1080
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
10

Otherwise Unclassified Properties

Base Metal Price, % relative 35
6.5
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 42
28
Embodied Water, L/kg 390
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.9 to 91
80
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
17
Strength to Weight: Bending, points 9.4 to 14
17
Thermal Diffusivity, mm2/s 110
6.9
Thermal Shock Resistance, points 8.2 to 15
13

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 99.83 to 99.915
0
Iron (Fe), % 0
87.1 to 90.3
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.5 to 1.0
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.050
0