MakeItFrom.com
Menu (ESC)

C10700 Copper vs. EN 1.4587 Stainless Steel

C10700 copper belongs to the copper alloys classification, while EN 1.4587 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C10700 copper and the bottom bar is EN 1.4587 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.2 to 50
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 230 to 410
540
Tensile Strength: Yield (Proof), MPa 77 to 410
250

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1080
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
17
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 35
36
Density, g/cm3 9.0
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.3
Embodied Energy, MJ/kg 42
87
Embodied Water, L/kg 390
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.9 to 91
150
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
150
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.2 to 13
18
Strength to Weight: Bending, points 9.4 to 14
18
Thermal Diffusivity, mm2/s 110
4.5
Thermal Shock Resistance, points 8.2 to 15
13

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 99.83 to 99.915
2.0 to 3.0
Iron (Fe), % 0
32.7 to 41.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
28 to 30
Nitrogen (N), % 0
0.15 to 0.25
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.050
0