MakeItFrom.com
Menu (ESC)

C10700 Copper vs. EN AC-42000 Aluminum

C10700 copper belongs to the copper alloys classification, while EN AC-42000 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C10700 copper and the bottom bar is EN AC-42000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 2.2 to 50
1.1 to 2.4
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Tensile Strength: Ultimate (UTS), MPa 230 to 410
170 to 270
Tensile Strength: Yield (Proof), MPa 77 to 410
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 210
500
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
610
Melting Onset (Solidus), °C 1080
600
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 390
160
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
38
Electrical Conductivity: Equal Weight (Specific), % IACS 100
130

Otherwise Unclassified Properties

Base Metal Price, % relative 35
9.5
Density, g/cm3 9.0
2.6
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 390
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.9 to 91
2.8 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
64 to 370
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
53
Strength to Weight: Axial, points 7.2 to 13
18 to 28
Strength to Weight: Bending, points 9.4 to 14
26 to 35
Thermal Diffusivity, mm2/s 110
66
Thermal Shock Resistance, points 8.2 to 15
7.9 to 12

Alloy Composition

Aluminum (Al), % 0
89.9 to 93.3
Copper (Cu), % 99.83 to 99.915
0 to 0.2
Iron (Fe), % 0
0 to 0.55
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.65
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0
0 to 0.15
Oxygen (O), % 0 to 0.0010
0
Silicon (Si), % 0
6.5 to 7.5
Silver (Ag), % 0.085 to 0.12
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15