MakeItFrom.com
Menu (ESC)

C10700 Copper vs. C94500 Bronze

Both C10700 copper and C94500 bronze are copper alloys. They have 72% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C10700 copper and the bottom bar is C94500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
92
Elongation at Break, % 2.2 to 50
12
Poisson's Ratio 0.34
0.36
Shear Modulus, GPa 43
34
Tensile Strength: Ultimate (UTS), MPa 230 to 410
170
Tensile Strength: Yield (Proof), MPa 77 to 410
83

Thermal Properties

Latent Heat of Fusion, J/g 210
160
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
940
Melting Onset (Solidus), °C 1080
800
Specific Heat Capacity, J/kg-K 390
330
Thermal Conductivity, W/m-K 390
52
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
10
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 35
30
Density, g/cm3 9.0
9.3
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 42
51
Embodied Water, L/kg 390
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.9 to 91
17
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
37
Stiffness to Weight: Axial, points 7.2
5.5
Stiffness to Weight: Bending, points 18
16
Strength to Weight: Axial, points 7.2 to 13
5.2
Strength to Weight: Bending, points 9.4 to 14
7.4
Thermal Diffusivity, mm2/s 110
17
Thermal Shock Resistance, points 8.2 to 15
6.7

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Copper (Cu), % 99.83 to 99.915
66.7 to 78
Iron (Fe), % 0
0 to 0.15
Lead (Pb), % 0
16 to 22
Nickel (Ni), % 0
0 to 1.0
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 1.2
Residuals, % 0 to 0.050
0