MakeItFrom.com
Menu (ESC)

C10800 Copper vs. C52400 Bronze

Both C10800 copper and C52400 bronze are copper alloys. They have 89% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C10800 copper and the bottom bar is C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 10 to 60
50 to 100
Rockwell Superficial 30T Hardness 27 to 63
54 to 84
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 220 to 380
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1080
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 350
50
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
11
Electrical Conductivity: Equal Weight (Specific), % IACS 92
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 41
58
Embodied Water, L/kg 310
390

Common Calculations

Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8 to 12
14 to 28
Strength to Weight: Bending, points 9.1 to 13
15 to 23
Thermal Diffusivity, mm2/s 100
15
Thermal Shock Resistance, points 7.8 to 13
17 to 32

Alloy Composition

Copper (Cu), % 99.95 to 99.995
87.8 to 91
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Phosphorus (P), % 0.0050 to 0.012
0.030 to 0.35
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5

Comparable Variants