MakeItFrom.com
Menu (ESC)

C10800 Copper vs. C86200 Bronze

Both C10800 copper and C86200 bronze are copper alloys. They have 63% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C10800 copper and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 4.0 to 50
21
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 220 to 380
710
Tensile Strength: Yield (Proof), MPa 75 to 370
350

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
940
Melting Onset (Solidus), °C 1080
900
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 350
35
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 92
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 9.0
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 41
49
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 88
120
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 600
540
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 6.8 to 12
25
Strength to Weight: Bending, points 9.1 to 13
22
Thermal Diffusivity, mm2/s 100
11
Thermal Shock Resistance, points 7.8 to 13
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Copper (Cu), % 99.95 to 99.995
60 to 66
Iron (Fe), % 0
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.0050 to 0.012
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0