MakeItFrom.com
Menu (ESC)

C10800 Copper vs. C89320 Bronze

Both C10800 copper and C89320 bronze are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C10800 copper and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 4.0 to 50
17
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 220 to 380
270
Tensile Strength: Yield (Proof), MPa 75 to 370
140

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
1050
Melting Onset (Solidus), °C 1080
930
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 350
56
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
15
Electrical Conductivity: Equal Weight (Specific), % IACS 92
15

Otherwise Unclassified Properties

Base Metal Price, % relative 31
37
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 41
56
Embodied Water, L/kg 310
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 88
38
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 600
93
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8 to 12
8.5
Strength to Weight: Bending, points 9.1 to 13
10
Thermal Diffusivity, mm2/s 100
17
Thermal Shock Resistance, points 7.8 to 13
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Copper (Cu), % 99.95 to 99.995
87 to 91
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.0050 to 0.012
0 to 0.3
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5