MakeItFrom.com
Menu (ESC)

C10800 Copper vs. C94900 Bronze

Both C10800 copper and C94900 bronze are copper alloys. They have 80% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C10800 copper and the bottom bar is C94900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 4.0 to 50
17
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 220 to 380
300
Tensile Strength: Yield (Proof), MPa 75 to 370
130

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
980
Melting Onset (Solidus), °C 1080
910
Specific Heat Capacity, J/kg-K 390
370
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
14
Electrical Conductivity: Equal Weight (Specific), % IACS 92
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
32
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
55
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 88
41
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 600
72
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8 to 12
9.4
Strength to Weight: Bending, points 9.1 to 13
11
Thermal Shock Resistance, points 7.8 to 13
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 99.95 to 99.995
79 to 81
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
4.0 to 6.0
Phosphorus (P), % 0.0050 to 0.012
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.8