MakeItFrom.com
Menu (ESC)

C11000 Copper vs. AWS ER90S-D2

C11000 copper belongs to the copper alloys classification, while AWS ER90S-D2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C11000 copper and the bottom bar is AWS ER90S-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.5 to 50
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 220 to 410
710
Tensile Strength: Yield (Proof), MPa 69 to 390
600

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
47
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.6
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 41
21
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 91
130
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 640
980
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 13
25
Strength to Weight: Bending, points 9.0 to 14
23
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 8.0 to 15
21

Alloy Composition

Carbon (C), % 0
0.070 to 0.12
Copper (Cu), % 99.9 to 100
0 to 0.5
Iron (Fe), % 0
95.2 to 97.4
Manganese (Mn), % 0
1.6 to 2.1
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
0 to 0.15
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.5 to 0.8
Sulfur (S), % 0
0 to 0.025
Residuals, % 0
0 to 0.5