MakeItFrom.com
Menu (ESC)

C11000 Copper vs. EN 1.4600 Stainless Steel

C11000 copper belongs to the copper alloys classification, while EN 1.4600 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C11000 copper and the bottom bar is EN 1.4600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.5 to 50
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 150 to 230
360
Tensile Strength: Ultimate (UTS), MPa 220 to 410
580
Tensile Strength: Yield (Proof), MPa 69 to 390
430

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
730
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 41
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 91
120
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 640
470
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 13
21
Strength to Weight: Bending, points 9.0 to 14
20
Thermal Diffusivity, mm2/s 110
7.3
Thermal Shock Resistance, points 8.0 to 15
21

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 99.9 to 100
0
Iron (Fe), % 0
82 to 87.7
Manganese (Mn), % 0
1.0 to 2.5
Nickel (Ni), % 0
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.35
Residuals, % 0 to 0.1
0