MakeItFrom.com
Menu (ESC)

C11100 Copper vs. 6351 Aluminum

C11100 copper belongs to the copper alloys classification, while 6351 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C11100 copper and the bottom bar is 6351 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 1.5
7.8 to 18
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 230
84 to 200
Tensile Strength: Ultimate (UTS), MPa 460
140 to 310
Tensile Strength: Yield (Proof), MPa 420
95 to 270

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
650
Melting Onset (Solidus), °C 1070
570
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 390
180
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
46
Electrical Conductivity: Equal Weight (Specific), % IACS 100
150

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 9.0
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
20 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 750
65 to 540
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 14
14 to 32
Strength to Weight: Bending, points 15
22 to 38
Thermal Diffusivity, mm2/s 110
72
Thermal Shock Resistance, points 16
6.1 to 14

Alloy Composition

Aluminum (Al), % 0
96 to 98.5
Copper (Cu), % 99.9 to 100
0 to 0.1
Iron (Fe), % 0
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0
0.4 to 0.8
Silicon (Si), % 0
0.7 to 1.3
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15