MakeItFrom.com
Menu (ESC)

C11100 Copper vs. EN 1.4662 Stainless Steel

C11100 copper belongs to the copper alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C11100 copper and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.5
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
79
Shear Strength, MPa 230
520 to 540
Tensile Strength: Ultimate (UTS), MPa 460
810 to 830
Tensile Strength: Yield (Proof), MPa 420
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1090
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
16
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 41
45
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
210
Resilience: Unit (Modulus of Resilience), kJ/m3 750
840 to 940
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14
29 to 30
Strength to Weight: Bending, points 15
25
Thermal Diffusivity, mm2/s 110
3.9
Thermal Shock Resistance, points 16
22

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 99.9 to 100
0.1 to 0.8
Iron (Fe), % 0
62.6 to 70.2
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Residuals, % 0 to 0.1
0