MakeItFrom.com
Menu (ESC)

C11100 Copper vs. EN AC-51300 Aluminum

C11100 copper belongs to the copper alloys classification, while EN AC-51300 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C11100 copper and the bottom bar is EN AC-51300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
67
Elongation at Break, % 1.5
3.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
25
Tensile Strength: Ultimate (UTS), MPa 460
190
Tensile Strength: Yield (Proof), MPa 420
110

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 1070
600
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 390
110
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
31
Electrical Conductivity: Equal Weight (Specific), % IACS 100
100

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 9.0
2.7
Embodied Carbon, kg CO2/kg material 2.6
9.1
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 750
87
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 14
20
Strength to Weight: Bending, points 15
28
Thermal Diffusivity, mm2/s 110
45
Thermal Shock Resistance, points 16
8.6

Alloy Composition

Aluminum (Al), % 0
91.4 to 95.5
Copper (Cu), % 99.9 to 100
0 to 0.1
Iron (Fe), % 0
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 0
0 to 0.45
Silicon (Si), % 0
0 to 0.55
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15