MakeItFrom.com
Menu (ESC)

C11100 Copper vs. Type 4 Niobium

C11100 copper belongs to the copper alloys classification, while Type 4 niobium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C11100 copper and the bottom bar is Type 4 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.5
23
Poisson's Ratio 0.34
0.4
Shear Modulus, GPa 44
38
Tensile Strength: Ultimate (UTS), MPa 460
220
Tensile Strength: Yield (Proof), MPa 420
140

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Specific Heat Capacity, J/kg-K 390
270
Thermal Conductivity, W/m-K 390
42
Thermal Expansion, µm/m-K 17
7.3

Otherwise Unclassified Properties

Density, g/cm3 9.0
8.6
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
44
Resilience: Unit (Modulus of Resilience), kJ/m3 750
93
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 14
7.2
Strength to Weight: Bending, points 15
9.5
Thermal Diffusivity, mm2/s 110
18
Thermal Shock Resistance, points 16
21

Alloy Composition

Carbon (C), % 0
0 to 0.010
Copper (Cu), % 99.9 to 100
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0
0 to 0.010
Molybdenum (Mo), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.0050
Niobium (Nb), % 0
98.1 to 99.2
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.050
Zirconium (Zr), % 0
0.8 to 1.2
Residuals, % 0 to 0.1
0