MakeItFrom.com
Menu (ESC)

C11300 Copper vs. C90500 Gun Metal

Both C11300 copper and C90500 gun metal are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C11300 copper and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.3 to 50
20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 230 to 410
320
Tensile Strength: Yield (Proof), MPa 77 to 400
160

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1030
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 390
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
11
Electrical Conductivity: Equal Weight (Specific), % IACS 100
11

Otherwise Unclassified Properties

Base Metal Price, % relative 32
35
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 42
59
Embodied Water, L/kg 340
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.5 to 91
54
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
110
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.2 to 13
10
Strength to Weight: Bending, points 9.4 to 14
12
Thermal Diffusivity, mm2/s 110
23
Thermal Shock Resistance, points 8.2 to 15
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 99.85 to 99.973
86 to 89
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Silver (Ag), % 0.027 to 0.050
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3