MakeItFrom.com
Menu (ESC)

C12900 Copper vs. EN 2.4650 Nickel

C12900 copper belongs to the copper alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C12900 copper and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.8 to 50
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
80
Shear Strength, MPa 150 to 210
730
Tensile Strength: Ultimate (UTS), MPa 220 to 420
1090
Tensile Strength: Yield (Proof), MPa 75 to 380
650

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1030
1350
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 380
12
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
80
Density, g/cm3 9.0
8.5
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 330
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 88
320
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 640
1030
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 6.8 to 13
36
Strength to Weight: Bending, points 9.1 to 14
28
Thermal Diffusivity, mm2/s 110
3.1
Thermal Shock Resistance, points 7.8 to 15
33

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.6
Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 99.88 to 100
0 to 0.2
Iron (Fe), % 0
0 to 0.7
Lead (Pb), % 0 to 0.0040
0
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0 to 0.050
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Silver (Ag), % 0 to 0.054
0
Sulfur (S), % 0
0 to 0.0070
Tellurium (Te), % 0 to 0.025
0
Titanium (Ti), % 0
1.9 to 2.4