MakeItFrom.com
Menu (ESC)

C12900 Copper vs. Grade CW6MC Nickel

C12900 copper belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C12900 copper and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.8 to 50
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 220 to 420
540
Tensile Strength: Yield (Proof), MPa 75 to 380
310

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1080
1480
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 380
11
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 32
80
Density, g/cm3 9.0
8.6
Embodied Carbon, kg CO2/kg material 2.6
14
Embodied Energy, MJ/kg 41
200
Embodied Water, L/kg 330
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 88
130
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 640
240
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 6.8 to 13
18
Strength to Weight: Bending, points 9.1 to 14
17
Thermal Diffusivity, mm2/s 110
2.8
Thermal Shock Resistance, points 7.8 to 15
15

Alloy Composition

Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 99.88 to 100
0
Iron (Fe), % 0
0 to 5.0
Lead (Pb), % 0 to 0.0040
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.050
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0 to 0.054
0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0 to 0.025
0