MakeItFrom.com
Menu (ESC)

C12900 Copper vs. S20161 Stainless Steel

C12900 copper belongs to the copper alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C12900 copper and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.8 to 50
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 150 to 210
690
Tensile Strength: Ultimate (UTS), MPa 220 to 420
980
Tensile Strength: Yield (Proof), MPa 75 to 380
390

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1380
Melting Onset (Solidus), °C 1030
1330
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 380
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
12
Density, g/cm3 9.0
7.5
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 88
360
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 640
390
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 6.8 to 13
36
Strength to Weight: Bending, points 9.1 to 14
29
Thermal Diffusivity, mm2/s 110
4.0
Thermal Shock Resistance, points 7.8 to 15
22

Alloy Composition

Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 99.88 to 100
0
Iron (Fe), % 0
65.6 to 73.9
Lead (Pb), % 0 to 0.0040
0
Manganese (Mn), % 0
4.0 to 6.0
Nickel (Ni), % 0 to 0.050
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
3.0 to 4.0
Silver (Ag), % 0 to 0.054
0
Sulfur (S), % 0
0 to 0.040
Tellurium (Te), % 0 to 0.025
0