MakeItFrom.com
Menu (ESC)

C14180 Copper vs. C83600 Ounce Metal

Both C14180 copper and C83600 ounce metal are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 85% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C14180 copper and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 15
21
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
39
Tensile Strength: Ultimate (UTS), MPa 210
250
Tensile Strength: Yield (Proof), MPa 130
120

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
1010
Melting Onset (Solidus), °C 1080
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 370
72
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 41
50
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
43
Resilience: Unit (Modulus of Resilience), kJ/m3 69
70
Stiffness to Weight: Axial, points 7.2
6.7
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.5
7.9
Strength to Weight: Bending, points 8.8
10
Thermal Diffusivity, mm2/s 110
22
Thermal Shock Resistance, points 7.4
9.3

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 99.9 to 100
84 to 86
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0 to 0.020
4.0 to 6.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.075
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.7