MakeItFrom.com
Menu (ESC)

C14180 Copper vs. C93700 Bronze

Both C14180 copper and C93700 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 80% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C14180 copper and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
99
Elongation at Break, % 15
20
Poisson's Ratio 0.34
0.35
Shear Modulus, GPa 43
37
Tensile Strength: Ultimate (UTS), MPa 210
240
Tensile Strength: Yield (Proof), MPa 130
130

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
140
Melting Completion (Liquidus), °C 1080
930
Melting Onset (Solidus), °C 1080
760
Specific Heat Capacity, J/kg-K 390
350
Thermal Conductivity, W/m-K 370
47
Thermal Expansion, µm/m-K 17
19

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 41
57
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
40
Resilience: Unit (Modulus of Resilience), kJ/m3 69
79
Stiffness to Weight: Axial, points 7.2
6.2
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 6.5
7.5
Strength to Weight: Bending, points 8.8
9.6
Thermal Diffusivity, mm2/s 110
15
Thermal Shock Resistance, points 7.4
9.4

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Copper (Cu), % 99.9 to 100
78 to 82
Iron (Fe), % 0
0 to 0.15
Lead (Pb), % 0 to 0.020
8.0 to 11
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.075
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0