MakeItFrom.com
Menu (ESC)

C14180 Copper vs. C94500 Bronze

Both C14180 copper and C94500 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 72% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14180 copper and the bottom bar is C94500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
92
Elongation at Break, % 15
12
Poisson's Ratio 0.34
0.36
Shear Modulus, GPa 43
34
Tensile Strength: Ultimate (UTS), MPa 210
170
Tensile Strength: Yield (Proof), MPa 130
83

Thermal Properties

Latent Heat of Fusion, J/g 210
160
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
940
Melting Onset (Solidus), °C 1080
800
Specific Heat Capacity, J/kg-K 390
330
Thermal Conductivity, W/m-K 370
52
Thermal Expansion, µm/m-K 17
20

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 9.0
9.3
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 310
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
17
Resilience: Unit (Modulus of Resilience), kJ/m3 69
37
Stiffness to Weight: Axial, points 7.2
5.5
Stiffness to Weight: Bending, points 18
16
Strength to Weight: Axial, points 6.5
5.2
Strength to Weight: Bending, points 8.8
7.4
Thermal Diffusivity, mm2/s 110
17
Thermal Shock Resistance, points 7.4
6.7

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Copper (Cu), % 99.9 to 100
66.7 to 78
Iron (Fe), % 0
0 to 0.15
Lead (Pb), % 0 to 0.020
16 to 22
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.075
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 1.2