MakeItFrom.com
Menu (ESC)

C14181 Copper vs. C83800 Bronze

Both C14181 copper and C83800 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 83% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C14181 copper and the bottom bar is C83800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 15
20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
39
Tensile Strength: Ultimate (UTS), MPa 210
230
Tensile Strength: Yield (Proof), MPa 130
110

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1080
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 380
72
Thermal Expansion, µm/m-K 17
19

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
39
Resilience: Unit (Modulus of Resilience), kJ/m3 69
53
Stiffness to Weight: Axial, points 7.2
6.6
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.5
7.4
Strength to Weight: Bending, points 8.8
9.6
Thermal Diffusivity, mm2/s 110
22
Thermal Shock Resistance, points 7.4
8.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Cadmium (Cd), % 0 to 0.0020
0
Carbon (C), % 0 to 0.0050
0
Copper (Cu), % 99.9 to 100
82 to 83.8
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0 to 0.0020
5.0 to 7.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.0020
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
3.3 to 4.2
Zinc (Zn), % 0 to 0.0020
5.0 to 8.0
Residuals, % 0
0 to 0.7