MakeItFrom.com
Menu (ESC)

C14200 Copper vs. AISI 444 Stainless Steel

C14200 copper belongs to the copper alloys classification, while AISI 444 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C14200 copper and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 45
23
Fatigue Strength, MPa 76 to 130
210
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 35 to 60
83
Shear Modulus, GPa 43
78
Shear Strength, MPa 150 to 200
300
Tensile Strength: Ultimate (UTS), MPa 220 to 370
470
Tensile Strength: Yield (Proof), MPa 75 to 340
310

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 190
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 45
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 83
95
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 500
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 11
17
Strength to Weight: Bending, points 9.1 to 13
17
Thermal Diffusivity, mm2/s 56
6.2
Thermal Shock Resistance, points 7.9 to 13
16

Alloy Composition

Arsenic (As), % 0.15 to 0.5
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 99.4 to 99.835
0
Iron (Fe), % 0
73.3 to 80.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0.015 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8