MakeItFrom.com
Menu (ESC)

C14200 Copper vs. EN 1.7338 Steel

C14200 copper belongs to the copper alloys classification, while EN 1.7338 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C14200 copper and the bottom bar is EN 1.7338 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 45
23
Fatigue Strength, MPa 76 to 130
220
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 150 to 200
310
Tensile Strength: Ultimate (UTS), MPa 220 to 370
490
Tensile Strength: Yield (Proof), MPa 75 to 340
300

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 190
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 45
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 41
21
Embodied Water, L/kg 310
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 83
97
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 500
240
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 11
17
Strength to Weight: Bending, points 9.1 to 13
18
Thermal Diffusivity, mm2/s 56
11
Thermal Shock Resistance, points 7.9 to 13
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Arsenic (As), % 0.15 to 0.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 99.4 to 99.835
0 to 0.3
Iron (Fe), % 0
95.4 to 97.8
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0.015 to 0.040
0 to 0.025
Silicon (Si), % 0
0.5 to 1.0
Sulfur (S), % 0
0 to 0.010