MakeItFrom.com
Menu (ESC)

C14200 Copper vs. Nickel 333

C14200 copper belongs to the copper alloys classification, while nickel 333 belongs to the nickel alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14200 copper and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0 to 45
34
Fatigue Strength, MPa 76 to 130
200
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 35 to 60
85
Shear Modulus, GPa 43
81
Shear Strength, MPa 150 to 200
420
Tensile Strength: Ultimate (UTS), MPa 220 to 370
630
Tensile Strength: Yield (Proof), MPa 75 to 340
270

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 190
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 45
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
8.5
Embodied Energy, MJ/kg 41
120
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 83
170
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 500
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 6.8 to 11
21
Strength to Weight: Bending, points 9.1 to 13
19
Thermal Diffusivity, mm2/s 56
2.9
Thermal Shock Resistance, points 7.9 to 13
16

Alloy Composition

Arsenic (As), % 0.15 to 0.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 99.4 to 99.835
0
Iron (Fe), % 0
9.3 to 24.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0.015 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.5 to 4.0