MakeItFrom.com
Menu (ESC)

C14200 Copper vs. C86400 Bronze

Both C14200 copper and C86400 bronze are copper alloys. They have 59% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C14200 copper and the bottom bar is C86400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 8.0 to 45
17
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 220 to 370
470
Tensile Strength: Yield (Proof), MPa 75 to 340
150

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1080
880
Melting Onset (Solidus), °C 1030
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 190
88
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
19
Electrical Conductivity: Equal Weight (Specific), % IACS 45
22

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
48
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 83
63
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 500
110
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 6.8 to 11
16
Strength to Weight: Bending, points 9.1 to 13
17
Thermal Diffusivity, mm2/s 56
29
Thermal Shock Resistance, points 7.9 to 13
16

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Arsenic (As), % 0.15 to 0.5
0
Copper (Cu), % 99.4 to 99.835
56 to 62
Iron (Fe), % 0
0.4 to 2.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0
0.1 to 1.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.015 to 0.040
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
34 to 42
Residuals, % 0
0 to 1.0