MakeItFrom.com
Menu (ESC)

C14300 Copper vs. AWS ER110S-1

C14300 copper belongs to the copper alloys classification, while AWS ER110S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14300 copper and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 42
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 220 to 460
870
Tensile Strength: Yield (Proof), MPa 76 to 430
740

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 380
47
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 96
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 96
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 41
25
Embodied Water, L/kg 310
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 72
140
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 810
1460
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 14
31
Strength to Weight: Bending, points 9.1 to 15
26
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 7.8 to 16
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Cadmium (Cd), % 0.050 to 0.15
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
0 to 0.5
Copper (Cu), % 99.9 to 99.95
0 to 0.25
Iron (Fe), % 0
92.8 to 96.3
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.9 to 2.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.040
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5