MakeItFrom.com
Menu (ESC)

C14300 Copper vs. C87610 Bronze

Both C14300 copper and C87610 bronze are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C14300 copper and the bottom bar is C87610 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0 to 42
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 220 to 460
350
Tensile Strength: Yield (Proof), MPa 76 to 430
140

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 220
190
Melting Completion (Liquidus), °C 1080
970
Melting Onset (Solidus), °C 1050
820
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 380
28
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 96
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 96
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 9.0
8.5
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
43
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 72
62
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 810
88
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 6.8 to 14
11
Strength to Weight: Bending, points 9.1 to 15
13
Thermal Diffusivity, mm2/s 110
8.1
Thermal Shock Resistance, points 7.8 to 16
13

Alloy Composition

Cadmium (Cd), % 0.050 to 0.15
0
Copper (Cu), % 99.9 to 99.95
90 to 94
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
0 to 0.25
Silicon (Si), % 0
3.0 to 5.0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.5