MakeItFrom.com
Menu (ESC)

C14300 Copper vs. N10675 Nickel

C14300 copper belongs to the copper alloys classification, while N10675 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14300 copper and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 2.0 to 42
47
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
85
Shear Strength, MPa 150 to 260
610
Tensile Strength: Ultimate (UTS), MPa 220 to 460
860
Tensile Strength: Yield (Proof), MPa 76 to 430
400

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 220
910
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1050
1370
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 380
11
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 96
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 96
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
80
Density, g/cm3 9.0
9.3
Embodied Carbon, kg CO2/kg material 2.6
16
Embodied Energy, MJ/kg 41
210
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 72
330
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 810
350
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 6.8 to 14
26
Strength to Weight: Bending, points 9.1 to 15
22
Thermal Diffusivity, mm2/s 110
3.1
Thermal Shock Resistance, points 7.8 to 16
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Cadmium (Cd), % 0.050 to 0.15
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 99.9 to 99.95
0 to 0.2
Iron (Fe), % 0
1.0 to 3.0
Manganese (Mn), % 0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1