MakeItFrom.com
Menu (ESC)

C14500 Copper vs. AISI 316N Stainless Steel

C14500 copper belongs to the copper alloys classification, while AISI 316N stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C14500 copper and the bottom bar is AISI 316N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 12 to 50
9.0 to 39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 150 to 190
420 to 690
Tensile Strength: Ultimate (UTS), MPa 220 to 330
620 to 1160
Tensile Strength: Yield (Proof), MPa 69 to 260
270 to 870

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1050
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 360
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 94
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 42
53
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 85
95 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 300
180 to 1880
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 10
22 to 41
Strength to Weight: Bending, points 9.1 to 12
20 to 31
Thermal Diffusivity, mm2/s 100
4.1
Thermal Shock Resistance, points 8.0 to 12
14 to 26

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
61.9 to 71.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0.0040 to 0.012
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.4 to 0.7
0