MakeItFrom.com
Menu (ESC)

C14500 Copper vs. AISI 384 Stainless Steel

C14500 copper belongs to the copper alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C14500 copper and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 220 to 330
480

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 94
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.7
Embodied Energy, MJ/kg 42
52
Embodied Water, L/kg 310
150

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 10
17
Strength to Weight: Bending, points 9.1 to 12
17
Thermal Diffusivity, mm2/s 100
4.3
Thermal Shock Resistance, points 8.0 to 12
11

Alloy Composition

Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
60.9 to 68
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
17 to 19
Phosphorus (P), % 0.0040 to 0.012
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.4 to 0.7
0