MakeItFrom.com
Menu (ESC)

C14500 Copper vs. EN 1.4606 Stainless Steel

C14500 copper belongs to the copper alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14500 copper and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 12 to 50
23 to 39
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
75
Shear Strength, MPa 150 to 190
410 to 640
Tensile Strength: Ultimate (UTS), MPa 220 to 330
600 to 1020
Tensile Strength: Yield (Proof), MPa 69 to 260
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 360
14
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 94
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 33
26
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
6.0
Embodied Energy, MJ/kg 42
87
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 85
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 300
200 to 1010
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 10
21 to 36
Strength to Weight: Bending, points 9.1 to 12
20 to 28
Thermal Diffusivity, mm2/s 100
3.7
Thermal Shock Resistance, points 8.0 to 12
21 to 35

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
49.2 to 59
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0.0040 to 0.012
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tellurium (Te), % 0.4 to 0.7
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5