MakeItFrom.com
Menu (ESC)

C14500 Copper vs. EN AC-51400 Aluminum

C14500 copper belongs to the copper alloys classification, while EN AC-51400 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C14500 copper and the bottom bar is EN AC-51400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
67
Elongation at Break, % 12 to 50
3.4
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
25
Tensile Strength: Ultimate (UTS), MPa 220 to 330
190
Tensile Strength: Yield (Proof), MPa 69 to 260
120

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 1050
600
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 360
110
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 94
31
Electrical Conductivity: Equal Weight (Specific), % IACS 95
110

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.6
9.1
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 85
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 300
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 6.8 to 10
20
Strength to Weight: Bending, points 9.1 to 12
28
Thermal Diffusivity, mm2/s 100
46
Thermal Shock Resistance, points 8.0 to 12
8.6

Alloy Composition

Aluminum (Al), % 0
90.5 to 95.5
Copper (Cu), % 99.2 to 99.596
0 to 0.050
Iron (Fe), % 0
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 0
0 to 0.45
Phosphorus (P), % 0.0040 to 0.012
0
Silicon (Si), % 0
0 to 1.5
Tellurium (Te), % 0.4 to 0.7
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15