MakeItFrom.com
Menu (ESC)

C14510 Copper vs. CC333G Bronze

Both C14510 copper and CC333G bronze are copper alloys. They have 80% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 9.1 to 9.6
13
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
45
Tensile Strength: Ultimate (UTS), MPa 300 to 320
710
Tensile Strength: Yield (Proof), MPa 230 to 250
310

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
230
Melting Completion (Liquidus), °C 1080
1080
Melting Onset (Solidus), °C 1050
1020
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 360
38
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 42
56
Embodied Water, L/kg 310
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
75
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
410
Stiffness to Weight: Axial, points 7.2
8.0
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 9.2 to 10
24
Strength to Weight: Bending, points 11 to 12
21
Thermal Diffusivity, mm2/s 100
10
Thermal Shock Resistance, points 11 to 12
24

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 99.15 to 99.69
76 to 83
Iron (Fe), % 0
3.0 to 5.5
Lead (Pb), % 0 to 0.050
0 to 0.030
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 3.0
Nickel (Ni), % 0
3.7 to 6.0
Phosphorus (P), % 0.010 to 0.030
0
Silicon (Si), % 0
0 to 0.1
Tellurium (Te), % 0.3 to 0.7
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.5