MakeItFrom.com
Menu (ESC)

C14510 Copper vs. C18600 Copper

Both C14510 copper and C18600 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 9.1 to 9.6
8.0 to 11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Shear Strength, MPa 180 to 190
310 to 340
Tensile Strength: Ultimate (UTS), MPa 300 to 320
520 to 580
Tensile Strength: Yield (Proof), MPa 230 to 250
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1090
Melting Onset (Solidus), °C 1050
1070
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
280
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 33
31
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
44 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
1060 to 1180
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.2 to 10
16 to 18
Strength to Weight: Bending, points 11 to 12
16 to 17
Thermal Diffusivity, mm2/s 100
81
Thermal Shock Resistance, points 11 to 12
19 to 20

Alloy Composition

Chromium (Cr), % 0
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 99.15 to 99.69
96.5 to 99.55
Iron (Fe), % 0
0.25 to 0.8
Lead (Pb), % 0 to 0.050
0
Nickel (Ni), % 0
0 to 0.25
Phosphorus (P), % 0.010 to 0.030
0
Tellurium (Te), % 0.3 to 0.7
0
Titanium (Ti), % 0
0.050 to 0.5
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0
0 to 0.5