MakeItFrom.com
Menu (ESC)

C14510 Copper vs. C69400 Brass

Both C14510 copper and C69400 brass are copper alloys. They have 82% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 9.1 to 9.6
17
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Shear Strength, MPa 180 to 190
350
Tensile Strength: Ultimate (UTS), MPa 300 to 320
570
Tensile Strength: Yield (Proof), MPa 230 to 250
270

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
920
Melting Onset (Solidus), °C 1050
820
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 360
26
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 33
27
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
80
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
340
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.2 to 10
19
Strength to Weight: Bending, points 11 to 12
18
Thermal Diffusivity, mm2/s 100
7.7
Thermal Shock Resistance, points 11 to 12
20

Alloy Composition

Copper (Cu), % 99.15 to 99.69
80 to 83
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0 to 0.050
0 to 0.3
Phosphorus (P), % 0.010 to 0.030
0
Silicon (Si), % 0
3.5 to 4.5
Tellurium (Te), % 0.3 to 0.7
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5