MakeItFrom.com
Menu (ESC)

C14510 Copper vs. C83400 Brass

Both C14510 copper and C83400 brass are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 9.1 to 9.6
30
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 300 to 320
240
Tensile Strength: Yield (Proof), MPa 230 to 250
69

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
1040
Melting Onset (Solidus), °C 1050
1020
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 360
190
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
55
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
21
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.2 to 10
7.7
Strength to Weight: Bending, points 11 to 12
9.9
Thermal Diffusivity, mm2/s 100
57
Thermal Shock Resistance, points 11 to 12
8.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 99.15 to 99.69
88 to 92
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.010 to 0.030
0 to 0.030
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tellurium (Te), % 0.3 to 0.7
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
8.0 to 12
Residuals, % 0
0 to 0.7