MakeItFrom.com
Menu (ESC)

C14510 Copper vs. C93400 Bronze

Both C14510 copper and C93400 bronze are copper alloys. They have 84% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 9.1 to 9.6
9.1
Poisson's Ratio 0.34
0.35
Shear Modulus, GPa 43
38
Tensile Strength: Ultimate (UTS), MPa 300 to 320
270
Tensile Strength: Yield (Proof), MPa 230 to 250
150

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
150
Melting Completion (Liquidus), °C 1080
950
Melting Onset (Solidus), °C 1050
850
Specific Heat Capacity, J/kg-K 390
350
Thermal Conductivity, W/m-K 360
58
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 33
32
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 42
54
Embodied Water, L/kg 310
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
21
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
120
Stiffness to Weight: Axial, points 7.2
6.3
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 9.2 to 10
8.3
Strength to Weight: Bending, points 11 to 12
10
Thermal Diffusivity, mm2/s 100
18
Thermal Shock Resistance, points 11 to 12
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Copper (Cu), % 99.15 to 99.69
82 to 85
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0 to 0.050
7.0 to 9.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.010 to 0.030
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tellurium (Te), % 0.3 to 0.7
0
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0