MakeItFrom.com
Menu (ESC)

C14510 Copper vs. C96800 Copper

Both C14510 copper and C96800 copper are copper alloys. They have 89% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 9.1 to 9.6
3.4
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
46
Tensile Strength: Ultimate (UTS), MPa 300 to 320
1010
Tensile Strength: Yield (Proof), MPa 230 to 250
860

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
1120
Melting Onset (Solidus), °C 1050
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
52
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 33
34
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
52
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
33
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
3000
Stiffness to Weight: Axial, points 7.2
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.2 to 10
32
Strength to Weight: Bending, points 11 to 12
25
Thermal Diffusivity, mm2/s 100
15
Thermal Shock Resistance, points 11 to 12
35

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Copper (Cu), % 99.15 to 99.69
87.1 to 90.5
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0 to 0.050
0 to 0.0050
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Phosphorus (P), % 0.010 to 0.030
0 to 0.0050
Sulfur (S), % 0
0 to 0.0025
Tellurium (Te), % 0.3 to 0.7
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5