MakeItFrom.com
Menu (ESC)

C14510 Copper vs. N10003 Nickel

C14510 copper belongs to the copper alloys classification, while N10003 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 9.1 to 9.6
42
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 43
80
Shear Strength, MPa 180 to 190
540
Tensile Strength: Ultimate (UTS), MPa 300 to 320
780
Tensile Strength: Yield (Proof), MPa 230 to 250
320

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 1080
1520
Melting Onset (Solidus), °C 1050
1460
Specific Heat Capacity, J/kg-K 390
420
Thermal Conductivity, W/m-K 360
12
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 33
70
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
13
Embodied Energy, MJ/kg 42
180
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
260
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
240
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 9.2 to 10
24
Strength to Weight: Bending, points 11 to 12
21
Thermal Diffusivity, mm2/s 100
3.1
Thermal Shock Resistance, points 11 to 12
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 99.15 to 99.69
0 to 0.35
Iron (Fe), % 0
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0
64.8 to 79
Phosphorus (P), % 0.010 to 0.030
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tellurium (Te), % 0.3 to 0.7
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5