MakeItFrom.com
Menu (ESC)

C14520 Copper vs. ACI-ASTM CF3 Steel

C14520 copper belongs to the copper alloys classification, while ACI-ASTM CF3 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is ACI-ASTM CF3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.0 to 9.6
60
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 290 to 330
510
Tensile Strength: Yield (Proof), MPa 230 to 250
250

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1050
1450
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 85
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
16
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
250
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
18
Strength to Weight: Bending, points 11 to 12
18
Thermal Diffusivity, mm2/s 94
4.3
Thermal Shock Resistance, points 10 to 12
11

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 21
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
62.9 to 75
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 12
Phosphorus (P), % 0.0040 to 0.020
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tellurium (Te), % 0.4 to 0.7
0