MakeItFrom.com
Menu (ESC)

C14520 Copper vs. ASTM A229 Spring Steel

C14520 copper belongs to the copper alloys classification, while ASTM A229 spring steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.0 to 9.6
14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Shear Strength, MPa 170 to 190
1020 to 1140
Tensile Strength: Ultimate (UTS), MPa 290 to 330
1690 to 1890
Tensile Strength: Yield (Proof), MPa 230 to 250
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 85
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 42
19
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
3260 to 4080
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
60 to 67
Strength to Weight: Bending, points 11 to 12
40 to 43
Thermal Diffusivity, mm2/s 94
14
Thermal Shock Resistance, points 10 to 12
54 to 60

Alloy Composition

Carbon (C), % 0
0.55 to 0.85
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
97.5 to 99
Manganese (Mn), % 0
0.3 to 1.2
Phosphorus (P), % 0.0040 to 0.020
0 to 0.040
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Tellurium (Te), % 0.4 to 0.7
0

Comparable Variants