MakeItFrom.com
Menu (ESC)

C14520 Copper vs. AWS ER90S-B3

C14520 copper belongs to the copper alloys classification, while AWS ER90S-B3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is AWS ER90S-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.0 to 9.6
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 290 to 330
690
Tensile Strength: Yield (Proof), MPa 230 to 250
620

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 85
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
4.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
24
Embodied Water, L/kg 310
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
1000
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
25
Strength to Weight: Bending, points 11 to 12
22
Thermal Diffusivity, mm2/s 94
11
Thermal Shock Resistance, points 10 to 12
20

Alloy Composition

Carbon (C), % 0
0.070 to 0.12
Chromium (Cr), % 0
2.3 to 2.7
Copper (Cu), % 99.2 to 99.596
0 to 0.35
Iron (Fe), % 0
93.5 to 95.9
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0.0040 to 0.020
0 to 0.025
Silicon (Si), % 0
0.4 to 0.7
Sulfur (S), % 0
0 to 0.025
Tellurium (Te), % 0.4 to 0.7
0
Residuals, % 0
0 to 0.5